Abstract

The structures and properties of organic-inorganic perovskites are influenced by the hydrogen bonding between the organic cations and the inorganic octahedral networks. This study explores the dynamics of hydrogen bonds in CH3NH3PbBr3 across a temperature range from 70 to 350 K, using molecular dynamics simulations with machine-learning force fields. The results indicate that the lifetime of hydrogen bonds decreases with increasing temperature from 7.6 ps (70 K) to 0.16 ps (350 K), exhibiting Arrhenius-type behavior. The geometric conditions for hydrogen bonding, which include bond lengths and angles, maintain consistency across the full temperature range. The relevance of hydrogen bonds for the vibrational states of the material is also evidenced through a detailed analysis of the vibrational power spectra, demonstrating their significant effect on the physical properties for this class of perovskites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.