Abstract

4-(Dimethylamino)pyridine (DMAP) shows solvent-dependent dual fluorescence from the initially excited state B* and a highly polar TICT state A*. Room-temperature time-resolved picosecond fluorescence investigations prove the bimodal kinetics of the excited-state electron transfer reaction B*-->A* in polar aprotic media. In medium polarity solvents (such as ethyl acetate) two emitting states of DMAP are shown to reach equilibrium within 50 ps. Both emitting states originate from the same ground state. The rate of excited-state charge separation depends on polarity and proton donating ability of the surrounding medium. The effects of temperature on the quantum yields of both fluorescences of DMAP in polar aprotic media indicate the transition from the kinetic regime (at low temperatures) to the equilibrium regime (at high temperatures). The kinetic behaviour of the dual luminescence of DMAP in protic solvents is more complex than in aprotic ones. In alcohols an efficient nonradiative channel competes with excited-state charge separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.