Abstract

The collisional deactivation of the laser excited states A 2Sigma+(v' = 1, N' = 4, 12) of OH in a flame is studied by measurement of spectrally resolved fluorescence decays in the picosecond time domain. Quenching and depolarization rates, as well as vibrational energy-transfer (VET) and rotational energy-transfer (RET) rates are determined. An empirical model describes the temporal evolution of the quenching and VET rates that emerge from the rotational-state relaxation. Fitting this model to the measured 1-0 and 0-0 fluorescence decays yields the quenching and VET rates of the initially excited rotational state along with those that correspond to a rotationally equilibrated vibronic-state population. VET from the higher rotational state (N' = 12) shows a tendency for resonant transitions to energetic close-lying levels. RET is investigated by analysis of the temporal evolution of the 1-1 emission band. The observed RET is well described by the energy-corrected sudden-approximation theory in conjunction with a power-gap law.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call