Abstract

A novel material deposited by molecular beam epitaxy at low substrate temperatures using Ga and As4 beam fluxes has been used as the active layer for a high-speed photoconductive optoelectronic switch. The high-speed photoconductive performance of the material was assessed by fabricating two devices: an Auston switch and a photoconductive-gap switch with a coplanar transmission line. In a coplanar transmission line configuration, the speed of response is 1.6 ps (full width at half maximum) and the response is 10 to 100 times greater than that of conventional photoconductive switches. Since the material is compatible with GaAs discrete device and integrated circuit technologies, this photoconductive switch may find extensive applications for high-speed device and circuit testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call