Abstract

The dynamics of the free-exciton capture by boron acceptors and phosphorus donors in diamond is observed in the picosecond range by time-resolved photoluminescence experiments at low temperature. The formation of boron-bound excitons is observed with a delay of 410 ps after the formation of free excitons. For phosphorus, this delay is 120 ps. This is the result of the free-exciton capture by B0 and P0 impurities. The lifetimes of boron- and phosphorus-bound excitons are measured and found to be equal to 270 and 70 ps, respectively. These values are about four orders of magnitude shorter than for the same impurities in silicon. Ei being the ionization energy of dopants, these results scale well with the E4i dependence of the Auger recombination rate expected for bound excitons in indirect band-gap semiconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.