Abstract

We present our results from the experimental and modeling studies of picosecond (ps) and femtosecond (fs) nonlinearities of two novel corroles (a) tritolyl corrole (TTC) (b) triphenyl corrole (TPC) using the Z-scan technique. Both open and closed aperture Z-scan curves were recorded with ~2 ps/~40 fs laser pulses at a wavelength of 800 nm and nonlinear optical coefficients were extracted for both studies. Both the molecules possessed negative nonlinear refractive index (n2) as revealed by signature of the closed aperture data in both (ps and fs) time domains. Picosecond nonlinear absorption data of TPC obtained at a concentration of 5 × 10-4 M demonstrated complex behavior with switching from reverse saturable absorption (RSA) within saturable absorption (SA) at lower peak intensities to RSA at higher peak intensities. TTC data recorded at the similar concentration exhibited saturable absorption (SA) type of behavior at lower peak intensities to switching from RSA with in SA at higher peak intensities. At a concentration of 2.5 × 10-4 M, the ps open aperture data at higher peak intensities illustrated effective three-photon absorption (3PA) for both the molecules. We also report the picosecond spectral dependent Z-scan studies performed at 680 nm, 700 nm, and 740 nm. Nonlinear absorption and refraction of both the samples at these three wavelengths were studied in detail. Femtosecond nonlinear absorption data of TPC and TTC demonstrated the behavior of saturable absorption (SA) at a concentration of 1 × 10-3 M. Solvent contribution to the nonlinearity was also identified. We have also evaluated the sign and magnitude of third order nonlinearity. We discuss the nonlinear optical performance of these organic molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call