Abstract
Picosecond acoustics is an optical pump-probe technique allowing to access thermoelastic properties and sound velocities of a large variety of materials under extreme conditions. Coupled with diamond anvil cells and laser heating, picosecond acoustics measurements offer the possibility to probe materials over a pressure and temperature range directly pertinent for the deep planetary interiors. In this paper we highlight the capabilities and versatility of this technique by presenting some recent applications on materials of geophysical interest. All the independent components of the elastic tensor of MgO are simultaneously determined by measurements on a single crystal at ambient conditions. Compressional sound velocity is measured at high pressure on an iron-carbon alloy and on polycrystalline argon. First laser heating test measurements performed on molybdenum at high pressure are also presented. These examples demonstrate that picosecond acoustics is a valuable alternative to already existing techniques for determining the physical properties of samples under extreme pressure and temperature conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.