Abstract

Despite recent tremendous progress in optical imaging and metrology1–6, there remains a substantial resolution gap between atomic-scale transmission electron microscopy and optical techniques. Is optical imaging and metrology of nanostructures exhibiting Brownian motion possible with such resolution, beyond thermal fluctuations? Here we report on an experiment in which the average position of a nanowire with a thermal oscillation amplitude of ∼150 pm is resolved in single-shot measurements with subatomic precision of 92 pm, using light at a wavelength of λ = 488 nm, providing an example of such sub-Brownian metrology with ∼λ/5,300 precision. To localize the nanowire, we employ a deep-learning analysis of the scattering of topologically structured light, which is highly sensitive to the nanowire’s position. This non-invasive metrology with absolute errors down to a fraction of the typical size of an atom, opens a range of opportunities to study picometre-scale phenomena with light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call