Abstract

Chemical biosensing techniques are essential for food analysis and disease diagnosis. Nanomaterials with redox activity show great potential in electrochemical analysis, acting as signal labels or signal amplification unit, which can reflect the targets concentration in foods and biological samples. Here, an ultra-sensitive dual-signal intrinsic self-calibration electrochemical platform for GSH was firstly fabricated based on the novel electroactive nanomaterial of ferrocene-functionalized copper metal–organic framework (Fc-Cu-MOF). Due to the solid-state electrochemical property of cuprous chloride (CuCl), a sharp characteristic peak with an increased signal appears with the coexistence of chloride ions in solution. The stronger specific affinity between Cu+ and GSH than that of Cu+ and Cl- triggers a “crowding effect” that causes the current signal of CuCl decrease greatly. Meanwhile, the peak current of ferrocene keeps unchanged as an internal reference. Based on the ratio of the peak current variation (ΔICu/ΔIFc) as the signal output, Fc-Cu-MOF modified electrode showed wider linear range in 0.1 nM −1 μM for GSH with the detection limit as low as 0.025 nM. And the sensor was successfully applied in the determination of GSH with excellent recoveries in various real samples such as food and serum samples, providing good prospect in application of bioanalysis and food screening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call