Abstract

An optically trapped birefringent microparticle is rotated by a circularly polarized beam in a confined gaseous medium. By recording the terminal rotation velocity and the change in polarization of the incident trapping beam, we determine the viscosity by probing a picoliter volume of air, carbon dioxide, and argon in the vicinity of the microparticle. We also characterize the optical force acting on a trapped particle in air using the generalized Lorenz-Mie theory taking into account the aberrations present. This opens up a new potential application of optical tweezers for the accurate measurement of gas viscosity in confined geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.