Abstract

A PIC (particle-in-cell)-MC (Monte Carlo) code to model electron beam transport into dense matter is developed. The background target is treated as a cold, stationary fluid and the fast electrons as particles with the relativistic motions. The process is described by a particle-in-cell method with consideration of the influence of both the self-generated electric and magnetic fields as well as collisions between the fast electrons and the target. The collisional part of the code is solved by the Monte Carlo-type method. Furthermore by assuming that the background current balances with the fast electron current, the electric field is given by the Ohm's law and the magnetic field is calculated from the Faraday's law. Both are solved in a two-dimensional cylindrical geometry. The algorithms implemented in the code are demonstrated and the numerical experiments are performed for monoenergy homogeneous fast electron beam transport in an aluminum target when the fields, collision and angular scattering are switched on and off independently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.