Abstract

As the world's population continues to age, it is estimated that degenerative joint disease disorders such as osteoarthritis will impact at least 130 million individuals throughout the globe by the year 2050. Advanced age, obesity, genetics, gender, bone density, trauma, and a poor level of physical activity can lead to the onset and progression of osteoarthritis. However, factors that lead to degenerative joint disease and involve gender, genetics, epigenetic mechanisms, and advanced age are not within the control of an individual. Furthermore, current therapies including pain management, improved nutrition, and regular programs for exercise do not lead to the resolution of osteoarthritis. As a result, new avenues for targeting the treatment of osteoarthritis are desperately needed. Wnt1 inducible signaling pathway protein 1 (WISP1), a matricellular protein and a downstream target of the wingless pathway Wnt1, is one such target to consider that governs cellular protection, stem cell proliferation, and tissue regeneration in a number of disorders including bone degeneration. However, increased WISP1 expression also has been associated with the progression of osteoarthritis. WISP1 has an intricate relationship with a number of proliferative and protective pathways that include phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin -6 (IL-6), transforming growth factor-β, matrix metalloproteinase, small non-coding ribonucleic acids (RNAs), sirtuin silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and the mechanistic target of rapamycin (mTOR). Taken together, this complex association WISP1 holds with these signaling pathways necessitates a fine biological regulation of WISP1 activity that can offset the progression of degenerative joint disease, but not limit the cellular protective capabilities of the WISP1 pathway.

Highlights

  • As the world’s population continues to age, it is estimated that degenerative joint disease disorders such as osteoarthritis will impact at least 130 million individuals throughout the globe by the year 2050

  • One exciting therapeutic target for osteoarthritis that is emerging as a novel consideration is Wnt1 inducible signaling pathway protein 1 (WISP1), known as CCN4 [4,5,6]

  • Given the ability of WISP1 to control cellular proliferation in the musculoskeletal system, WISP1 and related members of the CCN family have emerged as potential targets for disorders such as osteoarthritis and rheumatoid arthritis

Read more

Summary

Introduction

As the world’s population continues to age, it is estimated that degenerative joint disease disorders such as osteoarthritis will impact at least 130 million individuals throughout the globe by the year 2050. Risk factors that can lead to the progression of osteoarthritis involve advanced age, obesity, genetics, gender, bone density, trauma, and a poor level of physical activity [3]. One exciting therapeutic target for osteoarthritis that is emerging as a novel consideration is Wnt1 inducible signaling pathway protein 1 (WISP1), known as CCN4 [4,5,6].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call