Abstract
This paper explores structural, interfacial and thermal properties of two types of Pickering emulsions containing α-cyclodextrin inclusion complexes: on one hand, emulsions were obtained between aqueous solutions of α-cyclodextrin and different oils (fatty acids, olive oil, silicone oil) and on the other hand, emulsions were obtained between these oils, water and micro or nano-platelet suspensions with inclusion complexes of hydrophobically-modified polysaccharides. The emulsions exhibit versatile properties according to the molecular architecture of the oils. Experiments were performed by microcalorimetry, X-ray diffraction and confocal microscopy. The aptitude of oil molecules to be threaded in α-cyclodextrin cavity is a determining parameter in emulsification and thermal stability. The heat flow traces and images showed dissolution, cooperative melting and de-threading of inclusion complexes which take place progressively, ending at high temperatures, close or above 100°C. Another important feature observed in the emulsions with micro-platelets is the partial substitution of the guest molecules occurring at room temperature at the oil/water interfaces without dissolution, possibly by a diffusion mechanism of the oil. Accordingly, the dissolution and the cooperative melting temperatures of the inclusion crystals changed, showing marked differences upon the type of guest molecules. The enthalpies of dissolution of crystals were measured and compared with soluble inclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.