Abstract

Sugar beet pectin (SBP) is a naturally occurring emulsifying type of pectin fabricated into nanocomposites with montmorillonite (MMT) and then introduced as a stabilizer for high internal phase emulsions (HIPEs). SBP-MMT composites performed well in emulsifying medium-chain triglyceride with an oil volume fraction (φ) of 0.1–0.85 and SBP/MMT mass ratios of 1:0.1–1:0.75. The two representative high internal phase emulsions stabilized by SBP-MMT composites at different SBP/MMT mass ratios exhibited good stability against creaming and coalescence. In these emulsion systems, SBP and MMT formed a network in the continuous phase that markedly improved the rheological properties, including the storage modulus (by 3 orders of magnitude). Confocal light scattering microscopy analysis indicated that a fraction of MMT could work synergistically with SBP in adsorbing on oil droplet surfaces, enhancing stability. SBP-MMT composites stabilized high internal phase emulsions destabilized after the freeze-thaw treatment (−40 °C for 20 h and 25 °C for 4 h) but could be facilely re-emulsified via high-speed shearing. The gastrointestinal digestion behaviors were also modified by stabilizing SBP and MMT. Overall, this work reveals a hitherto undocumented strategy for fabricating highly stable emulsions based on SBP-MMT composites which have huge prospects for application in the food and related industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call