Abstract

Porous-structured evaporators have been fabricated for achieving a high clean water throughput due to their maximized surface area. However, most of the evaporation surfaces in the porous structure are not active because of the trapped vapor in pores. Herein, a three-dimensional (3D) cylindrical aerogel-based photothermal evaporator with a disordered interconnected hierarchical porous structure is developed via a Pickering emulsion-involved polymerization method. The obtained cotton cellulose/aramid nanofibers/polypyrrole (CAP) aerogel-based evaporator achieved all-cold evaporation under 1.0 sun irradiation, which not only completely eliminated energy loss via radiation, convection, and conduction, but also harvested massive extra energy from the surrounding environment and bulk water, thus significantly increasing the total energy input for vapor generation to deliver an extremely high evaporation rate of 5.368kg m-2 h-1 . In addition, with the external convective flow, solar steam generation over the evaporator can be dramatically enhanced due to fast vapor diffusion out of its unique opened porous structure, realizing an ultrahigh evaporation rate of 18.539kg m-2 h-1 under 1.0 sun and 4.0 m s-1 . Moreover, this evaporator can continuously operate with concentrated salt solution (20 wt.% NaCl). This work advances rational design and construction of solar evaporator to promote the application of solar evaporation technology in freshwater production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call