Abstract
We study the effect of electrolytes on the stability in aqueous media of spherical lignin particles (LP) and its relevance to Pickering emulsion stabilization. Factors considered included the role of ionic strength on morphology development, LP size distribution, surface charge, interfacial adsorption, colloidal and wetting behaviors. Stable emulsions are formed at salt concentrations as low as 50 mM, with the highest stability observed at a critical concentration (400 mM). We show salt-induced destabilization of LP aqueous dispersions at an ionic strength >400 mM. At this critical concentration LP flocculation takes place and particulate networks are formed. This has a profound consequence on the stability of LP-stabilized Pickering emulsions, affecting rheology and long-term stability. The results along with quartz microgravimetry and confocal microscopy observations suggest a possible mechanism for stabilization that considers the interfacial adsorption of LP at oil/water interfaces. The often-unwanted colloidal LP destabilization in water ensues remarkably stable Pickering emulsions by the effect of network formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.