Abstract
Pickering emulsions are eco-friendly, stabilized by solid particles, and have an essential role in leading industries. Although Pickering emulations have found several applications, surprisingly few investigations have attempted to explore the effectiveness of various mechanical processes for its production. To fill these gaps, the present investigation comprehensively examined the application of various Pickering emulsion preparation processes such as rotor-stator homogenization emulsification (R-SH), ultrasonic emulsification, and their combined processes by using nano-silica particles. The influences of emulsification time and intensity on emulsion droplets' distribution were analyzed as indicative factors. The kerosene/water nano-silica Pickering emulsion was utilized for all assessments. The obtained results demonstrated that the main distribution peak of the emulsion prepared by R-SH occurred where the chord length was greater than 40 μm. Micro-scale nano-silica-aggregates generated large droplets, while the fine-emulsion fraction was significantly increased after ultrasonic treatment. The experimental results showed that the emulsion prepared only by ultrasound needed substantial power to form a Pickering emulsion since the oil phase was difficult to disperse in the water phase. Finally, it was concluded that preprocessing by R-SH could form a stable and uniform emulsion speedily, which is essential for ultrasound emulsion preparation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.