Abstract

The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is used as an expression system for recombinant protein production for a variety of applications. It grows rapidly on inexpensive media containing methanol, glucose, glycerol, or ethanol as a sole carbon source. P. pastoris makes many posttranslational modifications and produces recombinant proteins either intracellularly or extracellularly. Because of these properties, P. pastoris has become a highly preferred host organism for biotechnology, pharmaceutical industry, and researchers.Recombinant protein production is usually performed under the control of the promoter of the alcohol oxidase gene I (AOX1). The AOX1 promoter is induced by methanol and repressed by glucose and ethanol. The regulation mechanisms of the AOX1 promoter have been studied in recent years. Another promoter used in recombinant protein production is derived from glyceraldehyde 3-phosphate dehydrogenase (GAP). It is a constitutive promoter. Recent literature showed that newly identified promoters of P. pastoris are promising as well, in addition to pAOX1 and pGAP.In this chapter, the regulation mechanisms of inducible pAOX1 and constitutive pGAP promoters are discussed. In addition, here we present an overview about the novel ADH3 promoter and alternative promoters of P. pastoris.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call