Abstract
The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory activity of piceatannol (trans-3,4,3',5'-tetrahydroxystilbene) in mouse skin in vivo. Female HR-1 hairless mice were topically treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) with or without piceatannol pretreatment. Epidermal protein expression was assessed by Western blot analysis. The cyclooxygenase-2 (COX-2) expression was detected by immunohistochemistry. The DNA binding of nuclear factor-kappaB (NF-κB) and activator protein-1 (AP-1) was examined by the electrophoretic mobility gel shift assay. The catalytic activity of IκBα kinase-β (IKKβ) was measured by in vitro kinase assay. Pretreatment with piceatannol attenuated TPA-induced expression of COX-2 and inducible nitric oxide synthase (iNOS) in mouse skin. Piceatannol diminished nuclear translocation and the DNA binding of NF-κB through the blockade of phosphorylation and subsequent degradation of IκBα. Piceatannol attenuated the catalytic activity of IKKβ and inhibited the phosphorylation of mitogen-activated protein (MAP) kinases in TPA-treated mouse skin. In addition, piceatannol decreased TPA-induced expression of c-Fos and the DNA binding of AP-1. Piceatannol inhibits TPA-induced COX-2 and iNOS expression by blocking the activation of NF-κB and AP-1 via suppression of the IKKβ activity and phosphorylation of MAP kinases, which provides a mechanistic basis of its anti-inflammatory effects in mouse skin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.