Abstract

Arithmetic properties of mirror symmetry (type IIA-IIB string duality) are studied. We give criteria for the mirror map q-series of certain families of Calabi–Yau manifolds to be automorphic functions. For families of elliptic curves and lattice polarized K3 surfaces with surjective period mappings, global Torelli theorems allow one to present these criteria in terms of the ramification behavior of natural algebraic invariants – the functional and generalized functional invariants respectively. In particular, when applied to one parameter families of rank 19 lattice polarized K3 surfaces, our criterion demystifies the Mirror-Moonshine phenomenon of Lian and Yau and highlights its non-monstrous nature. The lack of global Torelli theorems and presence of instanton corrections makes Calabi–Yau threefold families more complicated. Via the constraints of special geometry, the Picard–Fuchs equations for one parameter families of Calabi–Yau threefolds imply a differential equation criterion for automorphicity of the mirror map in terms of the Yukawa coupling. In the absence of instanton corrections, the projective periods map to a twisted cubic space curve. A hierarchy of “algebraic” instanton corrections correlated with the differential Galois group of the Picard–Fuchs equation is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.