Abstract

We investigate Picard-Hayman behavior of derivatives of meromorphic functions on an algebraically closed field K, complete with respect to a non-trivial ultrametric absolute value. We present an analogue of the well-known Hayman’s alternative theorem both in K and in any open disk. Here the main hypothesis is based on the behaviour of |f|(r) when r tends to +∞ on properties of special values and quasi-exceptional values.We apply this study to give some sufficient conditions on meromorphic functions so that they satisfy Hayman’s conjectures for n = 1and for n = 2. Given a meromorphic transcendental function f, at least one of the two functions f′f and f′f 2 assumes all non-zero values infinitely often. Further, we establish that if the sequence of residues at simple poles of a meromorphic transcendental function on K admits no infinite stationary subsequence, then either f′ + af 2 has infinitely many zeros that are not zeros of f for every a ∈ K* or both f′ + bf 3 and f′ + bf 4 have infinitely many zeros that are not zeros of f for all b ∈ K*. Most of results have a similar version for unbounded meromorphic functions inside an open disk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.