Abstract

BackgroundParalogs formed through gene duplication and isoforms formed through alternative splicing have been important processes for increasing protein diversity and maintaining cellular homeostasis. Despite their recognized importance and the advent of large-scale genomic and transcriptomic analyses, paradoxically, accurate annotations of all gene loci to allow the identification of paralogs and isoforms remain surprisingly incomplete. In particular, the global analysis of the transcriptome of a non-model organism for which there is no reference genome is especially challenging.ResultsTo reliably discriminate between the paralogs and isoforms in RNA-seq data, we redefined the pre-existing sequence features (sequence similarity, inverse count of consecutive identical or non-identical blocks, and match-mismatch fraction) previously derived from full-length cDNAs and EST sequences and described newly discovered genomic and transcriptomic features (twilight zone of protein sequence alignment and expression level difference). In addition, the effectiveness and relevance of the proposed features were verified with two widely used support vector machine (SVM) and random forest (RF) models. From nine RNA-seq datasets, all AUC (area under the curve) scores of ROC (receiver operating characteristic) curves were over 0.9 in the RF model and significantly higher than those in the SVM model.ConclusionsIn this study, using an RF model with five proposed RNA-seq features, we implemented our method called Paralogs and Isoforms Classifier based on Machine-learning approaches (PIC-Me) and showed that it outperformed an existing method. Finally, we envision that our tool will be a valuable computational resource for the genomics community to help with gene annotation and will aid in comparative transcriptomics and evolutionary genomics studies, especially those on non-model organisms.

Highlights

  • Paralogs formed through gene duplication and isoforms formed through alternative splicing have been important processes for increasing protein diversity and maintaining cellular homeostasis

  • We envision that our tool will be a valuable computational resource for the genomics community to help with gene annotation and will aid in comparative transcriptomics and evolutionary genomics studies, especially those on non-model organisms

  • Bioinformatic features for the classification of paralogs versus isoforms To discriminate between paralogs and isoforms, we considered five genomic and transcriptomic features, including sequence similarity (SS), inverse count of consecutive identical or non-identical blocks (ICCB), match-mismatch fraction (MMF), twilight zone of protein sequence alignment (TZ), and expression level difference (ELD)

Read more

Summary

Introduction

Paralogs formed through gene duplication and isoforms formed through alternative splicing have been important processes for increasing protein diversity and maintaining cellular homeostasis. Despite their recognized importance and the advent of large-scale genomic and transcriptomic analyses, paradoxically, accurate annotations of all gene loci to allow the identification of paralogs and iso‐ forms remain surprisingly incomplete. From a functional redundancy perspective, the predominant fate of duplicates is pseudogenization; a significant fraction of duplicated genes (hereafter called paralogs) is preserved by either subfunctionalization or neofunctionalization. This event plays a fundamental role in the evolution of genomes and organisms. It is firmly established that this alternative splicing event is prevalent in all multicellular eukaryotes

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call