Abstract

To develop technologies for the stable operation of electric propulsion systems, the effects of charge exchange (CEX) on the exhaust plume of a Hall thruster were studied using the particle-in-cell direct simulation Monte Carlo (PIC-DSMC) method. For the numerical analysis, an OpenFOAM-based code, pdFOAM, with a simple electron fluid model was employed. In an example problem using the D55 Hall thruster exhaust plume, the results showed good agreement with experimental measurements of the plasma potential. In the results, CEX effects enhanced Xe+ particle scattering near the thruster exit. However, due to the increase in the plasma potential with CEX effects, fewer Xe2+ particles were near the thruster exit with CEX effects than without CEX effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.