Abstract

Gene transcription is coordinately regulated by the balance between activation and repression mechanisms in response to various external stimuli. Ferritin, composed of H and L subunits, is the major intracellular iron storage protein involved in iron homeostasis. We previously identified an enhancer, termed antioxidant-responsive element (ARE), in the human ferritin H gene and its respective transcriptional activators including Nrf2 and JunD. Here we found that ATF1 (activating transcription factor 1) is a transcriptional repressor of the ferritin H ARE. Subsequent yeast two-hybrid screening identified PIAS3 (protein inhibitor of activated STAT3) as an ATF1-binding protein. Further investigation of the human ferritin H ARE regulation showed that 1) PIAS3 reversed ATF1-mediated repression of the ferritin H ARE; 2) ATF1 was sumoylated, but PIAS3, a SUMO E3 ligase, did not appear to play a major role in SUMO1-mediated ATF1 sumoylation or ATF1 transcription activating function; 3) PIAS3 decreased ATF1 binding to the ARE; and 4) ATF1 knockdown with siRNA increased ferritin H expression, whereas PIAS3 knockdown decreased basal expression and oxidative stress-mediated induction of ferritin H. These results suggest that PIAS3 antagonizes the repressor function of ATF1, at least in part by blocking its DNA binding, and ultimately activates the ARE. Collectively our results suggest that PIAS3 is a new regulator of ATF1 that regulates the ARE-mediated transcription of the ferritin H gene.

Highlights

  • Must tightly control cellular iron levels under various physiological conditions by storing excess iron in a nontoxic but bioavailable form

  • We report that ATF1 is a repressor of the human ferritin H antioxidantresponsive element (ARE) and that PIAS3 is an ATF1-binding protein, which counteracts ATF1 repressor function by diminishing its DNA binding in vivo in a sumoylation-independent manner

  • Luciferase and that the ATF1-mediated ARE repression was Because PIAS3 did not enhance ATF1 transcriptional activreversed by increased amounts of PIAS3 (Fig. 4B). This ity, we examined the possibility of inhibition of ATF1 bindreversal effect was not due to decreased expression of ATF1 ing to the ferritin H ARE through interaction with PIAS3

Read more

Summary

Introduction

Must tightly control cellular iron levels under various physiological conditions by storing excess iron in a nontoxic but bioavailable form. Ferritin H Regulation by ATF1 and PIAS3 as with other b-Zip transcription factors such as Jun and Fos family members, on an AP1-binding sequence or a cAMP response element [35, 36].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call