Abstract

The control of apical-basal polarity in epithelial layers is a fundamental event in many processes, ranging from embryonic development to tumor formation. A key feature of polarized epithelial cells is their ability to maintain an asymmetric distribution of specific molecular complexes, including the phosphoinositides PI(4,5)P2 and PI(3,4,5)P3. The spatiotemporal regulation of these phosphoinositides iscontrolled by the concerted action of phosphoinositide kinases and phosphatases. Using the Drosophila follicular epithelium as a model system invivo, we show here that PI(4,5)P2 is crucial to maintain apical-basal polarity. PI(4,5)P2 is essentially regulated bythe PI4P5 kinase Skittles (SKTL), whereas neither the phosphatase PTEN nor the PI(4,5)P3 kinase DP110 lead to loss of apical-basal polarity. By inactivating SKTL and thereby strongly reducing PI(4,5)P2 levels in a single cell of the epithelium, we observe the disassembly of adherens junctions, actin cytoskeleton reorganization, and apical constriction leading to delamination, a process similar to that observed during epithelial-mesenchymal transition. We provide evidence that PI(4,5)P2 controls the apical targeting of PAR-3/Bazooka to the plasma membrane and that the loss of this polarized distribution is sufficient to induce a similar cell shape change. Finally, we show that PI(4,5)P2 is excluded from the cell apex and that PAR-3 diffuses laterally just prior to the apical constriction in acontext of endogenous invagination. All together, these results indicate that the PIP5 kinase SKTL, by controlling PI(4,5)P2 polarity, regulates PAR-3 localization and thus the size of the apical domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.