Abstract

Cronobacter sakazakii (C. sakazakii) is an opportunistic pathogen that can cause neonatal sepsis and meningitis. The mechanism involved in the pathogenesis of C. sakazakii meningitis remains largely unknown. Previous studies indicated that bacterial invasion of brain microvascular endothelial cells is required for penetration into the central nervous system. In this study, we found that C. sakazakii invasion of human brain microvascular endothelial cells (HBMEC) was significantly inhibited by cytochalasin D, a disrupting agent of actin microfilaments. Disassembly of actin stress fibers and cortical actin fibers was observed in HBMEC infected with C. sakazakii. C. sakazakii infection leads to increased Akt phosphorylation in HBMEC, which was blocked by treatment with PI3K inhibitors. Meanwhile, PI3K and Akt inhibitors significantly inhibited C. sakazakii invasion of HBMEC. Our further results illustrated that the C. sakazakii-induced Akt activation and C. sakazakii invasion were attenuated in HBMEC transfected with dominant-negative PI3K (Δp110). More importantly, the actin filaments rearrangements in HBMEC induced by C. sakazakii were effectively blocked by PI3K inhibitors treatment and transfection with Δp110. Taken together, our findings demonstrated that PI3K-mediated actin rearrangements are required for C. sakazakii invasion of HBMEC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call