Abstract

Phosphoinositide-3-kinase and protein kinase B (PI3K-AKT) is upregulated in multiple myeloma (MM). Using a combination of short hairpin RNA (shRNA) lentivirus-mediated knockdown and pharmacologic isoform-specific inhibition we investigated the role of the PI3K p110γ (PI3Kγ) subunit in regulating MM proliferation and bone marrow microenvironment-induced MM interactions. We compared this with inhibition of the PI3K p110δ (PI3kδ) subunit and with combined PI3kδ/γ dual inhibition. We found that MM cell adhesion and migration were PI3Kγ-specific functions, with PI3kδ inhibition having no effect in MM adhesion or migration assays. At concentration of the dual PI3Kδ/γ inhibitor duvelisib, which can be achieved in vivo we saw a decrease in AKT phosphorylation at s473 after tumour activation by bone marrow stromal cells (BMSC) and interleukin-6. Moreover, after drug treatment of BMSC/tumour co-culture activation assays only dual PI3kδ/γ inhibition was able to induce MM apoptosis. shRNA lentiviral-mediated targeting of either PI3Kδ or PI3Kγ alone, or both in combination, increased survival of NSG mice xeno-transplanted with MM cells. Moreover, treatment with duvelisib reduced MM tumour burden in vivo. We report that PI3Kδ and PI3Kγ isoforms have distinct functions in MM and that combined PI3kδ/γ isoform inhibition has anti-MM activity. Here we provide a scientific rationale for trials of dual PI3kδ/γ inhibition in patients with MM.

Highlights

  • Multiple Myeloma (MM), is presently incurable with o50% of patients surviving over 5 years post diagnosis.[1]

  • To verify that PI3Kδ and PI3Kγ subunits are expressed in MM cells we examined protein expression of both isoforms using Western blotting in primary MM samples and MM cell lines

  • To understand the significance of PI3Kδ and/or PI3Kγ in MM we investigated the effects of PI3K inhibitors (idelalisib (PI3Kδ), CZC24832 (PI3Kγ) and duvelisib (PI3Kδ/γ)) on MM cell death assays

Read more

Summary

Introduction

Multiple Myeloma (MM), is presently incurable with o50% of patients surviving over 5 years post diagnosis.[1] MM is characterised by the accumulation of monoclonal plasma cells that are primarily contained within the bone marrow. Phosphoinositide-3-kinases (PI3K) are an enzyme group that generate phosphatidylinositol 3,4, 5-triphosphate (PIP3). PIP3 provides a membrane docking site for the tyrosine kinase AKT ( known as protein kinase B), which on binding upregulates cell survival and proliferation signals. PI3Kδ is usually activated by receptor tyrosine kinase signalling, PI3Kγ is most commonly found downstream of G protein-coupled receptors.[5,6,7] PI3K α/β catalytic subunits are expressed in a wide variety of tissues, whereas PI3Kδ/γ have been shown to be enriched in the haematopoietic system.[8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call