Abstract

Small molecule drugs are of significant importance in the treatment of non-small cell lung cancer (NSCLC). Here, we explored biological effects of the PI3K/mTOR inhibitor VS-5584 on NSCLC. Our findings indicated that VS-5584 administration resulted in a dose-dependent inhibition of NSCLC cell proliferation, as well as the induction of apoptosis and cycle arrest. Additionally, we observed a significant increase in intracellular reactive oxygen species (ROS) levels following VS-5584 treatment. The use of the ROS inhibitor N-acetylcysteine (NAC) effectively reduced ROS levels and decreased the proportion of apoptotic cells. Treatment with VS-5584 led to an upregulation of genes associated with apoptosis and cell cycle, such as c-caspase 3 and P21. Conversely, a downregulation of cyclin-dependent kinase 1 (CDK1) expression was observed. Next, transcriptome analyses revealed that VS-5584 treatment altered the abundance of 1520 genes/transcripts in PC-9 cells, one of which was polo-like kinase 1 (PLK1). These differentially expressed genes were primarily enriched in biological processes such as cell cycle regulation and cell apoptosis, which are closely linked to the P53 and apoptosis pathways. Co-treatment with VS-5584 and PLK1 inhibitor NMS-P937 resulted in enhanced cancer cell death, exhibiting synergistic inhibitory activity. Notably, VS-5584 inhibited the growth of NSCLC in a patient-derived xenograft (PDX) mouse model without observable abnormalities in major organs. Overall, VS-5584 effectively suppressed the growth of NSCLC cells both in vitro and in vivo. VS-5584 combined with NMS-P937 exhibited a synergistic effect in inhibiting NSCLC cell growth. These findings suggest that VS-5584 has potential as a therapeutic strategy for treating NSCLC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call