Abstract

To investigate the molecular mechanisms by which long-term exposure to cigarette smoke extract (CSE) contributes to ovarian cancer metastasis. Western blot analysis for diverse p110 isoforms of phosphoinositide 3-kinase (PI3K)-related signaling pathway and epithelial-mesenchymal transition (EMT) markers was performed to analyze the underlying mechanisms. Migratory activity of CSE-exposed ovarian cancer cells was determined by transendothelial migration and invasion assay. After exposure to CSE for four weeks, CaOV3 (primary) and SKOV3 (metastatic) ovarian cancer cells showed enhanced mesenchymal characteristics and produced EMT-related cytokines [intwerleukin-8 (IL-8), vascular endothelial growth factor (VEGF) and transforming growth factor-beta 1 (TGF-β1)]. CSE exposure activated the Src-p110δ-p21 protein-activated kinase 1 (PAK1) in CaOV3 cells and the Lyn-p110β-Rho-associated kinases 1/2 (ROCK1/2) in SKOV3 cells, which led to the stimulation of LIM kinase 1 (LIMK1) phosphorylation and TGF-β1 release. LIMK1 knockdown efficiently blocked the migratory activity and suppressed the mesenchymal phenotypes of CSE-treated ovarian cancer cells. Reactive oxygen species (ROS) initiated the CSE-mediated EMT processes in ovarian cancer cells. Characterization of the p110 isotypes of PI3K is critical for regulating cancer metastasis; LIMK1 could be a common therapeutic target of ovarian cancer metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.