Abstract

Our previous study demonstrated altered glucose metabolism and enhanced phosphorylation of the PI3K/AKT pathway in keloid fibroblasts (KFb) under hypoxic conditions. However, whether the PI3K/AKT pathway influences KFb cell function by regulating glucose metabolism under hypoxic conditions remains unclear. Here, we show that when PI3K/AKT pathway was inactivated with LY294002, the protein expression of glycolytic enzymes decreased, while the amount of mitochondria and mitochondrial membrane potential increased. The key parameters of extracellular acidification rate markedly diminished, and those of oxygen consumption rate significantly increased after inhibition of the PI3K/AKT pathway. When the PI3K/AKT pathway was suppressed, the levels of reactive oxygen species (ROS) and mitochondrial ROS (mitoROS) were significantly increased. Meanwhile, cell proliferation, migration and invasion were inhibited, and apoptosis was increased when the PI3K/AKT pathway was blocked. Additionally, cell proliferation was compromised when KFb were treated with both SC79 (an activator of the PI3K/AKT pathway) and 2-deoxy-d-glucose (an inhibitor of glycolysis), compared with the SC79 group. Moreover, a positive feedback mechanism was demonstrated between the PI3K/AKT pathway and hypoxia-inducible factor-1α (HIF-1α). Our data collectively demonstrated that the PI3K/AKT pathway promotes proliferation and inhibits apoptosis in KFb under hypoxia by regulating glycolysis, indicating that the PI3K/AKT signalling pathway could be a therapeutic target for keloids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.