Abstract

In the last decade, pathway-specific targeted therapy has revolutionized colorectal cancer (CRC) treatment strategies. This type of therapy targets a tumor-vulnerable spot formed primarily due to an alteration in an oncogene and/or a tumor suppressor gene. However, tumor heterogeneity in CRC frequently results in treatment resistance, underscoring the need to understand the molecular mechanisms involved in CRC for the development of novel targeted therapies. The phosphatidylinositol 3-kinase/protein kinase B/mammalian target of the rapamycin (PI3K/Akt/mTOR) signaling pathway axis is a major pathway altered in CRC. The aberrant activation of this pathway is associated with CRC initiation, progression, and metastasis and is critical for the development of drug resistance in CRC. Several drugs target PI3K/Akt/mTOR in clinical trials, alone or in combination, for the treatment of CRC. This review aims to provide an overview of the role of the PI3K/Akt/mTOR signaling pathway axis in driving CRC, existing PI3K/Akt/mTOR-targeted agents against CRC, their limitations, and future trends.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call