Abstract

In this study, we investigated the molecular basis of reactive oxygen species (ROS) generation induced by lipopolysaccharide (LPS) in A549 cells--an alveolar epithelial cell line. A549 cells or normal human bronchial epithelial (NHBE) cells were stimulated with LPS. ROS generation was measured in A549 cells or NHBE cells pre-treated with a selective inhibitor of phosphatidylinositol 3-kinase γ (PI3Kγ), AS 605240, PI3Kγ siRNA, or a ROS scavenger, pyridoxamine (PM). Treatment of A549 cells or NHBE cells with LPS caused a significant increase in intracellular ROS generation. Pretreatment with the PI3Kγ inhibitor, AS 605240 decreased the LPS-induced increase of ROS generation, phosphorylation of Akt, and production of phosphatidyl 3,4,5-trisphosphate in A549 cells. In addition, interference with siRNA for PI3Kγ significantly reduced LPS-induced ROS generation in A549 cells. Treatment of A549 cells with LPS or hydrogen peroxide increased the nuclear factor-κB (NF-κB) in the nucleus, accompanying an increase in phosphorylation of inhibitory κB-α, degradation of the protein, and reduction of cytosolic NF-κB. Pretreatment with AS 605240 reduced these LPS-induced changes. In addition, pretreatment with PM or N-acetyl cysteine resulted in inhibition of nuclear NF-κB activation. These results suggest that PI3Kγ plays a key role in LPS-induced ROS generation in alveolar epithelial cells, thereby activating NF-κB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.