Abstract

Quantifying animal behaviour during microscopy is crucial to associate optically recorded neural activity with behavioural outputs and states. Here, I describe an imaging and tracking system for head-restrained larval zebrafish compatible with functional microscopy. This system is based on the Raspberry Pi computer, Pi NoIR camera and open-source software for the real-time tail segmentation and skeletonization of the zebrafish tail at over 100 Hz. This allows for precise and long-term analyses of swimming behaviour, which can be related to functional signals recorded in individual neurons. This system offers a simple but performant solution for quantifying the behaviour of head-restrained larval zebrafish, which can be built for 340€.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.