Abstract

BackgroundSmall RNAs (sRNAs) are 20–30 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses. Insufficient inorganic phosphate (Pi) concentration triggers plant responses to balance the internal Pi level.ResultsIn this study, we describe Pi-starvation-responsive small RNAs and transcriptome changes in barley (Hordeum vulgare L.) using Next-Generation Sequencing (NGS) RNA-Seq data derived from three different types of NGS libraries: (i) small RNAs, (ii) degraded RNAs, and (iii) functional mRNAs. We find that differentially and significantly expressed miRNAs (DEMs, Bonferroni adjusted p-value < 0.05) are represented by 15 molecules in shoot and 13 in root; mainly various miR399 and miR827 isomiRs. The remaining small RNAs (i.e., those without perfect match to reference sequences deposited in miRBase) are considered as differentially expressed other sRNAs (DESs, p-value Bonferroni correction < 0.05). In roots, a more abundant and diverse set of other sRNAs (DESs, 1796 unique sequences, 0.13% from the average of the unique small RNA expressed under low-Pi) contributes more to the compensation of low-Pi stress than that in shoots (DESs, 199 unique sequences, 0.01%). More than 80% of differentially expressed other sRNAs are up-regulated in both organs. Additionally, in barley shoots, up-regulation of small RNAs is accompanied by strong induction of two nucleases (S1/P1 endonuclease and 3′-5′ exonuclease). This suggests that most small RNAs may be generated upon nucleolytic cleavage to increase the internal Pi pool. Transcriptomic profiling of Pi-starved barley shoots identifies 98 differentially expressed genes (DEGs). A majority of the DEGs possess characteristic Pi-responsive cis-regulatory elements (P1BS and/or PHO element), located mostly in the proximal promoter regions. GO analysis shows that the discovered DEGs primarily alter plant defense, plant stress response, nutrient mobilization, or pathways involved in the gathering and recycling of phosphorus from organic pools.ConclusionsOur results provide comprehensive data to demonstrate complex responses at the RNA level in barley to maintain Pi homeostasis and indicate that barley adapts to Pi-starvation through elicitation of RNA degradation. Novel P-responsive genes were selected as putative candidates to overcome low-Pi stress in barley plants.

Highlights

  • Small RNAs are 20–30 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses

  • Our results provide comprehensive data to demonstrate complex responses at the RNA level in barley to maintain Inorganic phosphate (Pi) homeostasis and indicate that barley adapts to Pi-starvation through elicitation of RNA degradation

  • We observed a significantly decreased concentration of Pi ions, with only 0.48 μmol Pi per g of fresh root weight (FW) and 4.2 μmol Pi per g of shoot FW, when compared with the control plants having 3.84 (p = 0.0056) and 24.35 μmol Pi/g FW (p = 0.0001), respectively (Fig. 1c)

Read more

Summary

Introduction

Small RNAs (sRNAs) are 20–30 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses. Barley (Hordeum vulgare L.) is one of the most commonly cultivated crop plants worldwide. It is a diploid plant with a low chromosome number (n = 7) and large genome size (haploid genome size of ~ 5.3 Gbp). Studies on the responses of barley to abiotic stresses can help to better its cultivation in variable and adverse conditions. Abiotic stresses trigger specific stress-induced molecular pathways that often involve different classes of small RNAs (sRNAs) [5,6,7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.