Abstract

Pi-SAR-L2 full polarimetic data observed in four different observational directions over a landslide area on Izu Oshima Island, induced by Typhoon Wipha on 16 October 2013, were analyzed to clarify the most appropriate L-band full polarimetric parameters and observational direction to detect a landslide area. Japanese airborne Pi-SAR-L2 and PiSAR-L data were used in this analysis. Several L-band full polarimetric parameters, including backscattering coefficient (σ°), coherence between two polarimetric states, four-component decomposition parameters (double-bounce/volume/surface/helix scattering), and eigenvalue decomposition parameters (entropy/α/anisotropy), were calculated to determine the most appropriate parameters for detecting landslide areas. The change in land cover from forest before the disaster to bare soil after the disaster was detected well by α, and coherence between HH and VV. Observational data from the bottom to the top of the landslide detected the landslide well, whereas observations from the opposite sides were not as useful, indicating that a smaller local incident angle is better to distinguish landslide and forested areas. Soil from the landslide intruded into the urban areas; however, none of the full polarimetric parameters showed any significant differences between the landslide-affected urban areas after the disaster and unaffected areas before the disaster.

Highlights

  • Full polarimetric SAR data are capable of identifying radar scattering mechanisms on the ground, and they have been used to estimate land cover class by connecting the radar backscattering mechanism to the land cover condition both by day and by night in all weather conditions

  • Watanabe et al [1] used Japanese L-band satellite SAR (PALSAR; Phased Array type L-band Synthetic Aperture Radar) full polarimetric data to detect landslide areas induced by the Iwate-Miyagi Nairuku earthquake of 2008, using the surface scattering component of a three-component decomposition model

  • The four-component decomposition image obtained by Pi-SAR-L2 (ID: L203201) is presented in

Read more

Summary

Introduction

Full polarimetric SAR data are capable of identifying radar scattering mechanisms on the ground, and they have been used to estimate land cover class by connecting the radar backscattering mechanism to the land cover condition both by day and by night in all weather conditions Such characteristics make these data applicable to the detection of a disaster area, especially for emergency observations made soon after a disaster happens. Czuchlewski et al [3] use L-band airborne SAR polarimetry data, and identify the extent of the landslide, using scattering entropy, anisotropy, and pedestal height They pointed out that one post-event single polarized SAR image is insufficient for distinguishing and Remote Sens. They pointed out that one post-event single polarized SAR image is insufficient for distinguishing and Remote Sens. 2016, 8, 282; doi:10.3390/rs8040282 www.mdpi.com/journal/remotesensing

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.