Abstract
A fungal pathogen soon to be described as Rutstroemia capillus-albis (Rutstroemiaceae, Helotiales, Leotiomycetes) has been identified as the causal agent of ‘bleach blonde syndrome’ on the invasive annual grass weed Bromus tectorum (cheatgrass) in western North America. This apparently common but previously undescribed disease causes premature senescence and sterility, but does not affect seed germination or seedling emergence and growth. This study investigated whether the new species produces phytotoxins that could be implicated in pathogenesis. The compounds 9-O-methylfusarubin, 9-O-methylbostrycoidin, 5-O-methylnectriafurone, trans-methyl-p-coumarate and terpestacin were isolated from the solid culture of this fungus. The undescribed absolute stereochemistry at C-3 of 9-O-methylfusarubin and at C-1’ of 5-O-methylnectriafurone were assigned by applying electronic and vibrational circular dichroism (ECD and VCD) combined with computational methods and the advanced Mosher’s method, respectively. The first three listed compounds are naphtoquinone pigments, while terpestacin is a sesterterpene, and trans-methyl-p-coumarate could be the product of an unusual fungal phenylpropanoid biosynthesis pathway. In a juvenile plant immersion bioassay, both 9-O-methylfusarubin and terpestacin proved to be highly toxic at 10−4 M, causing wilting and plant death within 10 days. This finding suggests that these two compounds could play a role in pathogenesis on B. tectorum.
Highlights
The invasive winter annual grass weed Bromus tectorum is dramatically altering the semi-arid shrubland ecosystems in the western USA
O‐methylnectriafurone, trans‐methyl‐p‐coumarate and terpestacin produced as secondary metabolites by the newly described plant pathogen R. capillus‐albis, as well as their phytotoxic activity against B. tectorum
Methylnectriafurone were determined for the first time by applying electronic circular dichroism
Summary
The invasive winter annual grass weed Bromus tectorum (cheatgrass) is dramatically altering the semi-arid shrubland ecosystems in the western USA. Increasing wildfire frequency and intensity has resulted in near-monocultures of this weed over very large areas [1,2]. A frequent occurrence in some areas heavily invaded by B. tectorum is periodic ‘cheatgrass die-off’ or complete stand failure. This poorly understood phenomenon is apparently caused by a complex interaction among multiple soilborne fungal pathogens [3]. From the solid cultures of Pyrenophora semeniperda (Brittlebank and Adams) Shoemaker [4,5], a large quantity of cytotoxic cytochalasin B was isolated, Molecules 2018, 23, 1734; doi:10.3390/molecules23071734 www.mdpi.com/journal/molecules
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.