Abstract
Biosynthesis of bismuth vanadate (BiVO4) nanorods was performed using dried fruit extracts of Hyphaene thebaica as a cost effective reducing and stabilizing agent. XRD, DRS, FTIR, zeta potential, Raman, HR-SEM, HR-TEM, EDS and SAED were used to study the main physical properties while the biological properties were established by performing diverse assays. The zeta potential is reported as − 5.21 mV. FTIR indicated Bi–O and V–O vibrations at 640 cm−1 and 700 cm−1/1120 cm−1. Characteristic Raman modes were observed at 166 cm−1, 325 cm−1 and 787 cm−1. High resolution scanning and transmission electron micrographs revealed a rod like morphology of the BiVO4. Bacillus subtilis, Klebsiella pneumonia, Fusarium solani indicated highest susceptibility to the different doses of BiVO4 nanorods. Significant protein kinase inhibition is reported for BiVO4 nanorods which suggests their potential anticancer properties. The nanorods revealed good DPPH free radical scavenging potential (48%) at 400 µg/mL while total antioxidant capacity of 59.8 µg AAE/mg was revealed at 400 µg/mL. No antiviral activity is reported on sabin like polio virus. Overall excellent biological properties are reported. We have shown that green synthesis can replace well established processes for synthesizing BiVO4 nanorods.
Highlights
Phytosynthesis of nanoscaled materials is an innovative approach often considered as a potential replacement for various chemical or physical methods
Physical characterizations Hyphaene thebaica dried fruit aqueous extracts were used as bio reductant for synthesis of novel BiVO4 nanorods
We have established the successful synthesis of BiVO4 by using Callistemon viminalis floral extracts as bioreductant (Mohamed et al 2018)
Summary
Phytosynthesis of nanoscaled materials is an innovative approach often considered as a potential replacement for various chemical or physical methods. The inherent nature of the chemical process often led to produce toxic wastes while the physical means are often accompanied with elevated energy requirements (Ovais et al 2018b; Khalil et al 2019a, b; Shah et al 2018; Hassan et al 2018). Relative to the biologically synthesized nanoparticles, the chemically synthesize nanoparticles indicate low biocompatibility and possess latent biological risks. In order to keep the energy balance and mitigating environmental risks, plants are used as a versatile bio-reductant for the synthesis of. Metal vanadate have been frequently looked for potential applications as implantable cardiac defibrillators, batteries, catalysis and photo catalysis (Sivakumar et al 2015). Various applications of BiVO4 has been well studied in water splitting, sensors, pollutant degradation etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.