Abstract
Due to poor solubility in lipids, many of bioactive components (Nutraceutical materials) show less bioactivity than optimal state in water solution. Phytosomes improve absorption and bioavailability of biomaterials. Liposomes, spherical shaped nanocarriers, were discovered in the 1960s by bangham. Due to their composition, variability and structural properties, liposomes and phytosomes are extremely versatile, leading to a large number of applications including pharmaceutical, cosmetics and food industrial fields. They are advanced forms of herbal formulations containing the bioactive phytoconstituents of herb extracts such as flavonoids, glycosides and terpenoids, which have good ability to transit from a hydrophilic environment into the lipid friendly environment of the outer cell membrane. They have better bioavailability and actions than the conventional herbal extracts containing dosage. Phytosome technology has increasing effect on the bioavailability of herbal extracts including ginkgo biloba, grape seed, green tea, milk thistle, ginseng, etc., and can be developed for various therapeutic uses or dietary supplements. Liposomes are composed of bilayer membranes, which are made of lipid molecules. They form when phospholipids are dispersed in aqueous media and exposed to high shear rates by using micro-fluidization or colloid mill. The mechanism for formation of liposomes is mainly the hydrophilic-hydrophobic interactions between phospholipids and water molecules. Here, we attempt to review the features of phytosomes and liposomes as well as their preparation methods and capacity in food and drug applications. Generally, it is believed that phytosomes and liposomes are suitable delivery systems for nutraceuticals, and can be widely used in food industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.