Abstract
In order to investigate the effect of plant density of Potamogeton crispus L. on the remediation of sediments contaminated by polycyclic aromatic hydrocarbons, a 54-day experiment with four plant densities(642, 1,604, 2,567 and 3,530 plants/m2)was conducted. The results showed higher plant density with slower plant growth rate. Surface area per plant was the most sensitive root parameter to plant density. At the end of the 54-day experiment, planting P. crispus enhanced the dissipation ratios of phenanthrene and pyrene in sediments by 6.5%—26.2% and 0.95%—13.6%, respectively. The dissipation increment increased with increasing plant density. Plant uptake accounted for only a small portion of the dissipation increments. Furthermore, P. crispus could evidently improve sediment redox potentials, and strong positive correlations between root surface area and the redox potential as well as between the redox potentials and the dissipation ratios of phenanthrene and pyrene were obtained, indicating that the oxygen released by the roots of P. crispus might be the main mechanism by which P. crispus enhanced the dissipation of PAHs in sediments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.