Abstract

The present study aimed to assess the efficiency of the water hyacinth (Eichhornia crassipes (Mart.) Solms) plant for the reduction of nitrogen and phosphorus pollutants from glass industry effluent (GIE) as batch mode phytoremediation experiments. For this, response surface methodology (RSM) and artificial neural networks (ANN) methods were adopted to evidence the optimization and prediction performances of E. crassipes for total Kjeldahl's nitrogen (TKN) and total phosphorus (TP) removal. The control parameters, i.e., GIE concentration (0, 50, and 100%) and plant density (1, 3, and 5 numbers) were used to optimize the best reduction conditions of TKN and TP. A quadratic model of RSM and feed-forward backpropagation algorithm-based logistic model (input layer: 2 neurons, hidden layer: 10 neurons, and output layer: 1 neuron) of ANN showed good fitness results for experimental optimization. Optimization results showed that maximum reduction of TKN (93.86%) and TP (87.43%) was achieved by using 60% of GIE concentration and nearly five plants. However, coefficient of determination (R2) values showed that ANN models (TKN: 0.9980; TP: 0.9899) were superior in terms of prediction performance as compared to RSM (TKN: 0.9888; TP: 0.9868). Therefore, the findings of this study concluded that E. crassipes can be effectively used to remediate nitrogen and phosphorus loads of GIE and minimize environmental hazards caused by its unsafe disposal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.