Abstract

ABSTRACTThe aim of this study was to evaluate the converged effect of maize and plant growth promoting bacteria on degradation of petroleum hydrocarbons under axenic conditions. Artificially spiked sand with 10 g kg−1 light crude oil was planted with maize alone and in combination with eight bacterial isolates having plant growth promotion and bioremediation potential to observe the dissipation of petroleum hydrocarbons. Results showed remarkable suppression of maize growth and biomass production due to phytotoxicity of the crude oil contamination. However, bio-augmentation of plants with bacteria having ACC-deaminase activity significantly compensated the reduction in plant growth compared to uninoculated plants. The results revealed that plants bio-augmented with PM32Y exhibited significant increase in root length (75%), plant height (74%), and biomass (67%) as compared to uninoculated plants after 60 days of planting. The same bacterium in convergence with maize caused 43% degradation of petroleum hydrocarbons as compared to the unplanted and uninoculated control. Amplification, sequencing and phylogenetic analysis of 16S rRNA gene sequence identified PM32Y bacterium as Bacillus subtilis strain. It is concluded that bio-augmentation of plants with plant growth promoting bacteria having bioremediation potential and ACC-deaminase activity can successfully be used in phytoremediation of petroleum hydrocarbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.