Abstract

We investigated the effects of organic amendments (thermophilic compost, vermicompost, and coconut coir) on the bioavailability of trace heavy metals of Zn, Cd, Pb, Co, and Ni from heavy metal-spiked soils under laboratory conditions. To test switchgrass (Panicum virgatum) as a potential crop for phytoremediation of heavy metal from soil, we investigated whether the addition of organic amendments promoted switchgrass growth, and consequently, uptake of metals. Compost is a valuable soil amendment that supplies nutrients for plant establishment and growth, which is beneficial for phytoremediation. However, excess application of compost can result in nutrient leaching, which has adverse effects on water quality. We tested the nutrient leaching potential of the different organic amendments to identify trade-offs between phytoremediation and water quality. Results showed that the amendments decreased the amount of bioavailable metals in the soils. Organic amendments increased soil pH, electrical conductivity (EC), and soil nutrient status. Switchgrass shoot and root biomass was significantly greater in the amended soils compared to the non-amended control. Amended treatments showed detectable levels of heavy metal uptake in switchgrass shoots, while the control treatment did not produce enough switchgrass biomass to measure uptake. Switchgrass uptake of certain heavy metals, and concentrations of some leachate nutrients significantly differed among the amended treatments. By improving soil properties and plant productivity and reducing heavy metal solubility that can otherwise hamper plant survival, organic amendments can greatly enhance phytoremediation in heavy metal-contaminated soils.

Highlights

  • Phytoremediation is a set of ecological strategies that utilizes plants, in situ, to promote the breakdown, immobilization, and removal of pollutants from the environment [1,2,3]

  • We focus on the ability of switchgrass to extract toxic trace heavy metals with and without yield-enhancing organic amendments

  • This paper reports on a lab study that explores the efficacy of switchgrass to remove heavy metals from soils amended with composts and coir

Read more

Summary

Introduction

Phytoremediation is a set of ecological strategies that utilizes plants, in situ, to promote the breakdown, immobilization, and removal of pollutants from the environment [1,2,3]. Plants have a more direct effect on contaminant levels via phytoextraction, which concentrates contaminants (e.g., heavy metals) from the environment into plant tissues. Phytoremediation is a cost-effective remediation solution for removing pollutants (mainly heavy metals and organics) from contaminated soils and waters at site level with little disturbance to the landscape [3,4]. It reduces the cost of alternatively disposing hazardous wastes to a landfill or a storage facility located off-site [3]. Public Health 2019, 16, 1261; doi:10.3390/ijerph16071261 www.mdpi.com/journal/ijerph

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call