Abstract

Environmental pollution with metals and xenobiotics is a global problem, and the development of phytoremediation technologies for the plant-based clean-up of contaminated soils is therefore of significant interest. Phytoremediation technologies are currently available for only a small subset of pollution problems, such as arsenic. Arsenic removal employs naturally selected hyperaccumulator ferns, which accumulate very high concentrations of arsenic specifically in above-ground tissues. Elegant two-gene transgenic approaches have been designed for the development of mercury or arsenic phytoremediation technologies. In a plant that naturally hyperaccumulates zinc in leaves, approximately ten key metal homeostasis genes are expressed at very high levels. This outlines the extent of change in gene activities needed in the engineering of transgenic plants for soil clean-up. Further analysis and discovery of genes for phytoremediation will benefit from the recent development of segregating populations for a genetic analysis of naturally selected metal hyperaccumulation in plants, and from comprehensive ionomics data--multi-element concentration profiles from a large number of Arabidopsis mutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.