Abstract

Global change involves shifts in multiple environmental factors that act in concert to shape ecological systems in ways that depend on local biotic and abiotic conditions. Little is known about the effects of combined global change stressors on phytoplankton communities, and particularly how these are mediated by distinct community properties such as productivity, grazing pressure and size distribution. Here, we tested for the effects of warming and eutrophication on phytoplankton net growth rate and C:N:P stoichiometry in two phytoplankton cell size fractions (<30 µm and >30 µm) in the presence and absence of grazing in microcosm experiments. Because effects may also depend on lake productivity, we used phytoplankton communities from three Dutch lakes spanning a trophic gradient. We measured the response of each community to multifactorial combinations of temperature, nutrient, and grazing treatments and found that nutrients elevated net growth rates and reduced carbon:nutrient ratios of all three phytoplankton communities. Warming effects on growth and stoichiometry depended on nutrient supply and lake productivity, with enhanced growth in the most productive community dominated by cyanobacteria, and strongest stoichiometric responses in the most oligotrophic community at ambient nutrient levels. Grazing effects were also most evident in the most oligotrophic community, with reduced net growth rates and phytoplankton C:P stoichiometry that suggests consumer‐driven nutrient recycling. Our experiments indicate that stoichiometric responses to warming and interactions with nutrient addition and grazing are not universal but depend on lake productivity and cell size distribution.

Highlights

  • | INTRODUCTIONWe measured net growth rates, N:P and C:P for two size fractions (30 μm) for all three communities, and tested for the independent and interactive effects of nutrient addition, warming and grazing

  • Global environmental change is currently shifting nutrient fluxes and climate in ways that affect the structure and functioning of food webs

  • Our results indicate that climate warming, nutrient enrichment and grazing elicit distinct responses in lake phytoplankton com‐ munities depending on the trophic state, community composition and size structure

Read more

Summary

| INTRODUCTION

We measured net growth rates, N:P and C:P for two size fractions (30 μm) for all three communities, and tested for the independent and interactive effects of nutrient addition, warming and grazing. We hy‐ pothesized that the effect of warming on stoichiometry may vary by community and interact with nutrient supply, such that under low nutrient conditions, warming will constrain phytoplankton growth and lead to enhanced accumulation of excess elements. | 2753 was to understand whether climate warming and eutrophication exert consistent independent or interactive effects on phytoplank‐ ton stoichiometry, or whether their effects depend on lake trophic status, cell size, or the presence of zooplankton grazers

| MATERIALS AND METHODS
Redfield C:P
Findings
| DISCUSSION
| CONCLUSIONS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call