Abstract

The Costa Rica Dome (CRD) represents a classic case of the bloom-forming capacity of small phytoplankton. Unlike other upwelling systems, autotrophic biomass in the CRD is dominated by picocyanobacteria and small eukaryotes that outcompete larger diatoms and reach extremely high biomass levels. We investigated responses of the subsurface phytoplankton community of the CRD to changes associated with vertical displacement of water masses, coupling in situ transplanted dilution experiments with flow cytometry and epifluorescence microscopy to assess group-specific dynamics. Growth rates of Synechococcus (SYN) and photosynthetic picoeukaryotes (PEUK) were positively correlated with light (Rpearson_SYN = 0.602 and Rpearson_PEUK = 0.588, P < 0.001). Growth rates of Prochlorococcus (PRO), likely affected by photoinhibition, were not light correlated (Rpearson_PRO = 0.101, P = 0.601). Overall, grazing and growth rates were closely coupled in all picophytoplankton groups (Rspearman_PRO = 0.572, Rspearman_SYN = 0.588, Rspearman_PEUK = 0.624), and net growth rates remained close to zero. Conversely, the abundance and biomass of larger phytoplankton, mainly diatoms, increased more than 10-fold in shallower transplant incubations indicating that, in addition to trace-metal chemistry, light also plays a significant role in controlling microphytoplankton populations in the CRD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.