Abstract

The phytoplankton ecology of Great South Bay, New York, was studied over a 1-year period. The study area, a large barrier island estuary (coastal lagoon with estuarine circulation), was characterized by high levels of inorganic nutrients, high turbidity and a shallow euphotic zone (<2 m). Net annual primary production by phytoplankton was high—450 g C m −2 year −1—and accounted for approximately 85% of the total ecosystem primary production. Chlorophyll a-specific productivity was dependent on mean photic zone light intensity in areas of the bay <1 m in depth from September 1979 through June 1980; 65–95% of the total light extinction in those areas was attibutable to suspended solids. Nitrogenous nutrient concentration did not limit phytoplankton productivity. Diatom and dinoflagellate cell densities varied greatly over time, while cryptomonad and chlorophyte species were abundant throughtout the year. Chlorophytes of 2–4 μm (‘small forms’) were numerically dominant, and contributed approximately half of the total phytoplankton biomass. Dilution of bay water by intruding ocean water appeared to control the spatial distribution of chlorophyll a on the south side of the bay; in other areas, growth appeared to exceed the rate of dilution by flushing. Waters entrained in eelgrass beds were significantly higher in salinity and mean photic zone light intensity, and had lower phytoplankton standing stock and depth-integrated primary production than control areas; waters in the sediment plume of active clamdigging boats were statistically similar to control areas with respect to water quality and phytoplankton community characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call