Abstract

During pathogenic interactions, both the host and pathogen are exposed to conditions that induce programmed cell death (PCD). Certain aspects of PCD have been recently examined in eukaryotic microbes but not in oomycetes. Here, we identified conserved TatD proteins in Phytophthora sojae; the proteins are key components of DNA degradation in apoptosis. We selected PsTatD4 for further investigation because the enzyme is unique to the oomycete branch of the phylogenetic tree. The purified protein exhibited DNase activity in vitro. Its expression was upregulated in sporangia and later infective stages but downregulated in cysts and during early infection. Functional analysis revealed that the gene was required for sporulation and zoospore production, and the expression levels were associated with the numbers of hydrogen-peroxide-induced terminal dUTP nick end-labeling-positive cells. Furthermore, overexpression of PsTatD4 gene reduced the virulence in a susceptible soybean cultivar. Together, these data suggest that apoptosis may play different roles in the early and late infective stages of P. sojae, and that PsTatD4 is a key regulator of infection. The association of PsTatD4 and apoptosis will lay a foundation to understanding the basic biology of apoptosis and its roles in P. sojae disease cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.