Abstract

Terrestrial biogeochemical carbon (C) sequestration is coupled with the biogeochemical silicon (Si) cycle through mechanisms such as phytolith C sequestration, but the size and distribution of the phytolith C sink remain unclear. Here, we estimate phytolith C sequestration in global terrestrial biomes. We used biome data including productivity, phytolith and silica contents, and the phytolith stability factor to preliminarily determine the size and distribution of the phytolith C sink in global terrestrial biomes. Total phytolith C sequestration in global terrestrial biomes is 156.7±91.6TgCO2yr−1. Grassland (40%), cropland (35%), and forest (20%) biomes are the dominant producers of phytolith-based carbon; geographically, the main contributors are Asia (31%), Africa (24%), and South America (17%). Practices such as bamboo afforestation/reforestation and grassland recovery for economic and ecological purposes could theoretically double the above phytolith C sink. The potential terrestrial phytolith C sequestration during 2000–2099 under such practices would be 15.7–40.5PgCO2, equivalent in magnitude to the C sequestration of oceanic diatoms in sediments and through silicate weathering. Phytolith C sequestration contributes vitally to the global C cycle, hence, it is essential to incorporate plant-soil silica cycling in biogeochemical C cycle models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.