Abstract

The analysis of the total number of phytoliths, and the absolute frequencies of the different morphotypes, extracted from fossil dung beetle brood balls ( Coprinisphaera) from the Middle Eocene–Early Miocene Sarmiento Formation (Patagonia, Argentina), revealed that this trace fossil represents a concentrated locus for phytolith sampling. Particularly, differences found in the total number of phytoliths among parts of that trace fossil and the bearing paleosol, allowed to infer that the infilling represents mostly a sample of the original surrounding soil, whereas in most cases the wall shows a significantly higher number of phytoliths than in the paleosol or infilling. Modern brood balls also revealed that in an environment with high density of grasses, the walls, composed of soil and dung fibres, showed a lower concentration of phytoliths than the soil. In contrast, in other environment with scarce grass coverage, the dung, which had a higher concentration of phytoliths than the soil, added to the wall produced an increase in the number of phytoliths in it. Accordingly, the larger number of phytoliths of the Coprinisphaera wall in comparison with that of the paleosol, would be reflecting the addition of dung fibres to the wall in palaeoenvironments with moderate to poor presence of phytolith-bearing plants. The absence of differences in the total number of phytoliths between the internal and the external layer of the brood ball wall, suggests that the dung fibres would have been uniformly distributed in most of the wall, due to the addition of dung fibres during the brood ball construction by the dung beetle. In contrast, the absence of differences among wall and paleosol or infilling, could be suggesting that no dung fibres were added to construct the wall, that those added had no phytoliths, that the Coprinisphaera involved could had been a brood ball of a necrophagous scarab, or that the soils were richer in phytoltihs than the dung. Those balls that showed evidence of increased numbers of phytoliths in the wall, likely caused by dung fibres added to it, enable the study of diet preferences of the herbivores that produced the dung. Differences found in the phytolith morphotype frequencies among the wall, and the other two samples (infilling and paleosol), allow to infer that some herbivores were more generalists among phytolith-bearing plants feeding on the most abundant grasses and palms, whereas others preferred more rare grasses and dicots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.