Abstract

A vast array of herbivorous arthropods live with symbiotic microorganisms. However, little is known about the nature and functional mechanism of bacterial effects on plant defense responses towards herbivores. We explored the role of microbes present in extracts of oral secretion (OS) isolated from larvae of Spodoptera litura, a generalist herbivore, in phytohormone signaling-dependent defense responses in Arabidopsis thaliana (Arabidopsis). In response to mechanical damage (MD) with application of bacteria-free OS (OS- ) prepared by sterilization or filtration of OS, Arabidopsis leaves exhibited enhanced de novo synthesis of oxylipins, and induction of transcript abundance of the responsible genes, in comparison to those in leaves with MD + nonsterilized OS (OS+ ), indicating that OS bacteria serve as suppressors of these genes. By contrast, de novo synthesis/signaling of salicylic acid and signaling of abscisic acid were enhanced by OS bacteria. These signaling networks were cross-regulated by each other. Meta-analysis of OS bacteria identified 70 bacterial strains. Among them was Staphylococcus epidermidis, an anaerobic staphylococcus that was shown to contribute to the suppression/manipulation of phytohormone-dependent plant defense signaling. The presence of OS bacteria was consequently beneficial for S.litura larvae hosted by Brassicaceae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.